Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2315015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455384

RESUMO

We report investigations of the magnetic textures in periodic multilayers [Pt(1 nm)/(CoFeB(0.8 nm)/Ru(1.4 nm)]10 using polarised neutron reflectometry (PNR) and small-angle neutron scattering (SANS). The multilayers are known to host skyrmions stabilized by Dzyaloshinskii-Moriya interactions induced by broken inversion symmetry and spin-orbit coupling at the asymmetric interfaces. From depth-dependent PNR measurements, we observed well-defined structural features and obtained the layer-resolved magnetization profiles. The in-plane magnetization of the CoFeB layers calculated from fitting of the PNR profiles is found to be in excellent agreement with magnetometry data. Using SANS as a bulk probe of the entire multilayer, we observe long-period magnetic stripe domains and skyrmion ensembles with full orientational disorder at room temperature. No sign of skyrmions is found below 250 K, which we suggest is due to an increase of an effective magnetic anisotropy in the CoFeB layer on cooling that suppresses skyrmion stability. Using polarised SANS at room temperature, we prove the existence of pure Néel-type windings in both stripe domain and skyrmion regimes. No Bloch-type winding admixture, i.e. an indication for hybrid windings, is detected within the measurement sensitivity, in good agreement with expectations according to our micromagnetic modelling of the multilayers. Our findings using neutron techniques provide valuable microscopic insights into the rich magnetic behavior of skyrmion-hosting multilayers, which are essential for the advancement of future skyrmion-based spintronic devices.


The study presents a unique investigation of [Pt/CoFeB/Ru]10 multilayers, revealing suppressed skyrmion phases, intricate magnetic domain structures, and Néel-type domain walls, providing crucial insights for spintronic applications.

2.
Nat Commun ; 14(1): 8050, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052859

RESUMO

Magnetic skyrmions, topological vortex-like spin textures, garner significant interest due to their unique properties and potential applications in nanotechnology. While they typically form a hexagonal crystal with distinct internal magnetisation textures known as Bloch- or Néel-type, recent theories suggest the possibility for direct transitions between skyrmion crystals of different lattice structures and internal textures. To date however, experimental evidence for these potentially useful phenomena have remained scarce. Here, we discover the polar tetragonal magnet EuNiGe3 to host two hybrid skyrmion phases, each with distinct internal textures characterised by anisotropic combinations of Bloch- and Néel-type windings. Variation of the magnetic field drives a direct transition between the two phases, with the modification of the hybrid texture concomitant with a hexagonal-to-square skyrmion crystal transformation. We explain these observations with a theory that includes the key ingredients of momentum-resolved Ruderman-Kittel-Kasuya-Yosida and Dzyaloshinskii-Moriya interactions that compete at the observed low symmetry magnetic skyrmion crystal wavevectors. Our findings underscore the potential of polar magnets with rich interaction schemes as promising for discovering new topological magnetic phases.

3.
Langmuir ; 39(30): 10464-10474, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458993

RESUMO

The kinetics of UV radiation-induced fast collapse and recovery in thermally cycled and rehydrated light- and thermo- double-responsive copolymer films of poly(oligo(ethylene glycol) methyl ether methacrylate-co-6-(4-phenylazophenoxy)hexyl acrylate), abbreviated as P(OEGMA300-co-PAHA), are probed by in situ neutron reflectivity (NR). The copolymer film is exposed to a thermal treatment starting at a temperature of 60 °C, which is well above its transition temperature (TT = 53 °C) before the temperature is rapidly decreased from 60 to 23 °C. Based on the applied protocol, the initially collapsed P(OEGMA300-co-PAHA) film is rehydrated due to the switching of polymer chains from a more hydrophobic to a more hydrophilic state when the temperature falls below its TT. The whole rehydration process can be divided into 3 stages: D2O absorption, chain rearrangement, and film reswelling. After rehydration, the thermally cycled P(OEGMA300-co-PAHA) film is switched by UV irradiation via setting the UV radiation on and off. Considering the UV-induced collapse and recovery, both processes are slower than those observed in freshly hydrated films without any thermal stimulus history. Therefore, the experienced thermal history of the film should be considered in the design of sensors and detectors based on double-responsive copolymer films.

4.
Commun Biol ; 6(1): 526, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188797

RESUMO

Monomeric alpha-synuclein (aSyn) is a well characterised protein that importantly binds to lipids. aSyn monomers assemble into amyloid fibrils which are localised to lipids and organelles in insoluble structures found in Parkinson's disease patient's brains. Previous work to address pathological aSyn-lipid interactions has focused on using synthetic lipid membranes, which lack the complexity of physiological lipid membranes. Here, we use physiological membranes in the form of synaptic vesicles (SV) isolated from rodent brain to demonstrate that lipid-associated aSyn fibrils are more easily taken up into iPSC-derived cortical i3Neurons. Lipid-associated aSyn fibril characterisation reveals that SV lipids are an integrated part of the fibrils and while their fibril morphology differs from aSyn fibrils alone, the core fibril structure remains the same, suggesting the lipids lead to the increase in fibril uptake. Furthermore, SV enhance the aggregation rate of aSyn, yet increasing the SV:aSyn ratio causes a reduction in aggregation propensity. We finally show that aSyn fibrils disintegrate SV, whereas aSyn monomers cause clustering of SV using small angle neutron scattering and high-resolution imaging. Disease burden on neurons may be impacted by an increased uptake of lipid-associated aSyn which could enhance stress and pathology, which in turn may have fatal consequences for neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Vesículas Sinápticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Roedores/metabolismo , Lipídeos
5.
Macromol Rapid Commun ; 44(9): e2300035, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36815590

RESUMO

Time-of-flight neutron reflectometry (ToF-NR) performed under different relative humidity conditions demonstrates that polymer brushes constituted by hydrophilic, cyclic macromolecules exhibit a more compact conformation with lower roughness as compared to linear brush analogues, due to the absence of dangling chain ends extending at the polymer-vapor interface. In addition, cyclic brushes feature a larger swelling ratio and an increased solvent uptake with respect to their linear counterparts as a consequence of the increased interchain steric repulsions. It is proposed that differences in swelling ratios between linear and cyclic brushes come from differences in osmotic pressure experienced by each brush topology. These differences stem from entropic constraints. The findings suggest that to correlate the equilibrium swelling ratios at different relative humidity for different topologies a new form of the Flory-like expression for equilibrium thicknesses of grafted brushes is needed.


Assuntos
Polímeros , Substâncias Macromoleculares , Solventes , Conformação Molecular , Interações Hidrofóbicas e Hidrofílicas
6.
Langmuir ; 38(26): 8094-8103, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35732057

RESUMO

The kinetic rehydration of thin di-block copolymer poly(diethylene glycol monomethyl ether methacrylate)-block-poly(poly(ethylene glycol) methyl ether methacrylate) (PO2-b-PO300) films containing two thermoresponsive components is probed by in situ neutron reflectivity (NR) with different thermal stimuli in the D2O vapor atmosphere. The transition temperatures (TTs) of PO2 and PO300 blocks are 25 and 60 °C, respectively. After the one-step stimulus (rapid decrease in temperature from 60 to 20 °C), the film directly switches from a collapsed to a fully swollen state. The rehydration process is divided into four steps: (a) D2O condensation, (b) D2O absorption, (c) D2O evaporation, and (d) film reswelling. However, the film presents a different rehydration behavior when the thermal stimulus is separated into two smaller steps (first decrease from 60 to 40 °C and then to 20 °C). The film first switches from a collapsed to a semiswollen state caused by the rehydrated PO300 blocks after the first step of thermal stimulus (60 to 40 °C) and then to a swollen state induced by the rehydrated PO2 blocks after the second step (40 to 20 °C). Thus, the kinetic responses are distinct from that after the one-step thermal stimulus. Both the time and extent of condensation as well as evaporation processes are significantly reduced in these two smaller steps. However, the final states of the rehydrated PO2-b-PO300 films are basically identical irrespective of the applied thermal stimulus. Thus, the final state of thermoresponsive di-block copolymer films is not affected by the external thermal stimuli, which is beneficial for the design and preparation of sensors or switches based on thermoresponsive polymer films.

7.
Langmuir ; 38(22): 6934-6948, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609178

RESUMO

The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied via spectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(N-isopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50-100 nm thickness are first swollen in saturated water vapor (H2O or D2O), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (H2O or D2O/acetone-d6 = 9:1 v/v). The affinity of the DBC film toward H2O is stronger than for D2O, as inferred from the higher film thickness in the swollen state and the higher absorbed water content, thus revealing a pronounced isotope sensitivity. During the co-solvent-induced switching by mixed water/acetone vapor, a two-step film contraction is observed, which is attributed to the delayed expulsion of water molecules and uptake of acetone molecules. The swelling kinetics are compared for both mixed vapors (H2O/acetone-d6 and D2O/acetone-d6) and with those of the related homopolymer films. Moreover, the concomitant variations of the local environment around the hydrophilic groups located in the PSBP and PNIPMAM blocks are followed. The first contraction step turns out to be dominated by the behavior of the PSBP block, whereas the second one is dominated by the PNIPMAM block. The unusual swelling and contraction behavior of the latter block is attributed to its co-nonsolvency behavior. Furthermore, we observe cooperative hydration effects in the DBC films, that is, both polymer blocks influence each other's solvation behavior.

8.
Langmuir ; 37(22): 6819-6829, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34043364

RESUMO

The hydration and thermal response kinetics of the cross-linked thermoresponsive copolymer poly((diethylene glycol monomethyl ether methacrylate)-co-poly(ethylene glycol) methyl ether methacrylate), abbreviated as P(MEO2MA-co-OEGMA300), thin film on a hydrophobic polyacrylonitrile (PAN) substrate coating, which resembles a synthetic fabric, is probed by in situ neutron reflectivity (NR). The PAN and monomer (MEO2MA and OEGMA300) solutions are sequentially spin-coated onto a silicon (Si) substrate. Afterward, plasma treatment is applied to realize the cross-linking of PAN and monomers. The as-prepared cross-linked P(MEO2MA-co-OEGMA300) film on the hydrophobic PAN substrate coating presents a two-layer structure: a substrate-near layer, which is a mixture of PAN and P(MEO2MA-co-OEGMA300), and a main layer, which is composed of pure hydrophilic P(MEO2MA-co-OEGMA300). During hydration in D2O vapor atmosphere, the hydrophobic PAN component prevents the formation of D2O enrichment in the substrate-near layer. However, an additional vapor-near layer is observed on top of the main layer, which is enriched with D2O. The hydration process is constrained by the cross-linking points in the film, inducing the relaxation time to be longer than that in a spin-coated P(MEO2MA-co-OEGMA300) film. Because the as-prepared cross-linked film presents a transition temperature (TT) at 38 °C, the hydrated film switches to the collapsed state when the temperature is increased from 23 to 50 °C. The response to a thermal stimulus is also slower due to the existence of the internal cross-linking points as compared to the spin-coated film. Interestingly, no reswelling is observed at the end of the thermal stimulus, which can be also attributed to the presence of internal cross-linking points.

9.
Rev Sci Instrum ; 92(2): 023306, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648099

RESUMO

Graphite intercalation compounds (GICs) are a group of layered materials that are suitable as monochromators for cold neutrons. KC24 is a particularly interesting compound in this regard as it features a large c-axis lattice spacing of 8.74 Å, high reflectivity, and the possibility to produce large crystals with mosaicity that matches the beam divergence of cold neutron guides. GICs can be synthesized with different levels of intercalation, known as the stage of the compounds. Each stage displays a specific d-spacing. Impure GIC-monochromators containing multiple stages produce mixing of neutron wavelengths, which complicates data analysis on neutron reflectometers. We discuss the implications of GIC crystal purity and stage contamination for neutron reflectometry and show how GIC crystals can be characterized by time-of-flight neutron diffraction providing an efficient and quantifiable measure of the reflected wavelength spectrum. This allows taking into account multiple wavelength contaminations and ascertains the robustness of reflectometry measurements.

10.
Soft Matter ; 17(9): 2603-2613, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33527960

RESUMO

Abnormal fast dehydration and rehydration of light- and thermo-dual-responsive copolymer films of poly(oligo(ethylene glycol) methyl ether methacrylate-co-6-(4-phenylazophenoxy)hexyl acrylate), abbreviated as P(OEGMA300-co-PAHA), are triggered by UV radiation. Both rapid kinetic processes are probed by in situ neutron reflectivity (NR). The transition temperatures (TTs) of P(OEGMA300-co-PAHA) are 53.0 (ambient conditions) and 52.5 °C (UV radiation, λ = 365 nm). Thin P(OEGMA300-co-PAHA) films show a random distribution of OEGMA300 and PAHA segments. They swell in a D2O vapor atmosphere at 23 °C (below TT) to a swelling ratio d/das-prep of 1.61 ± 0.01 and exhibit a D2O volume fraction φ(D2O) of 39.3 ± 0.5%. After being exposed to UV radiation for only 60 s, d/das-prep and φ(D2O) significantly decrease to 1.00 ± 0.01 and 13.4 ± 0.5%, respectively. Although the UV-induced trans-cis isomerization of the azobenzene in PAHA induces increased hydrophilicity, the configuration change causes a breaking of the intermolecular hydrogen bonds between OEGMA300 and D2O molecules and unexpected film shrinkage. As compared to thermal stimulus-induced dehydration, the present dehydration rate is 100 times faster. Removal of the UV radiation causes immediate rehydration. After 200 s, d/das-prep and φ(D2O) recover to their hydrated states, which is also 30 times faster than the initial hydration. At 60 °C (above TT), thin P(OEGMA300-co-PAHA) films switch to their collapsed state and are insensitive to UV radiation. Thus, the UV-induced fast dehydration and rehydration depend on the existence of hydrogen bonds.

11.
Langmuir ; 36(22): 6228-6237, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32388986

RESUMO

The impact of thermal history on the kinetic response of thin thermoresponsive diblock copolymer poly(diethylene glycol monomethyl ether methacrylate)-block-poly(poly(ethylene glycol) methyl ether methacrylate), abbreviated as PMEO2MA-b-POEGMA300, films is investigated by in situ neutron reflectivity. The PMEO2MA and POEGMA300 blocks are both thermoresponsive polymers with a lower critical solution temperature. Their transition temperatures (TTs) are around 25 °C (TT1, PMEO2MA) and 60 °C (TT2, POEGMA300). Thus, by applying different temperature protocols (20 to 60 or 20 to 40 to 60 °C), the PMEO2MA-b-POEGMA300 thin films experience different thermal histories: the first protocol directly switches from a swollen to a collapsed state, whereas the second one switches first from a swollen to a semicollapsed and finally to a collapsed state. Although the applied thermal histories differ, the response and final state of the collapsed films are very close to each other. After the thermal stimulus, both films present a complicated response composed of an initial shrinkage, followed by a rearrangement. Interestingly, a subsequent reswelling of the collapsed film is only observed in the case of having applied a thermal stimulus of 20 to 40 °C. The normalized film thickness and the D2O amount of each layer in the PMEO2MA-b-POEGMA300 films are consistent at the end of the two different thermal stimuli. Hence, it can be concluded that the thermal history does not influence the final state of the PMEO2MA-b-POEGMA300 films upon heating. Based on this property, these thin films are especially suitable for the temperature switches on the nanoscale, which may experience different thermal histories.

12.
Phys Rev Lett ; 124(1): 017202, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976692

RESUMO

We report the discovery of topological magnetism in the candidate magnetic Weyl semimetal CeAlGe. Using neutron scattering we find this system to host several incommensurate, square-coordinated multi-k[over →] magnetic phases below T_{N}. The topological properties of a phase stable at intermediate magnetic fields parallel to the c axis are suggested by observation of a topological Hall effect. Our findings highlight CeAlGe as an exceptional system for exploiting the interplay between the nontrivial topologies of the magnetization in real space and Weyl nodes in momentum space.

13.
IUCrJ ; 7(Pt 1): 136-142, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31949914

RESUMO

Small-angle scattering of X-rays and neutrons is a routine method for the determination of nanoparticle sizes. The so-called Guinier law represents the low-q approximation for the small-angle scattering curve from an assembly of particles. The Guinier law has originally been derived for nonmagnetic particle-matrix-type systems and it is successfully employed for the estimation of particle sizes in various scientific domains (e.g. soft-matter physics, biology, colloidal chemistry, materials science). An important prerequisite for it to apply is the presence of a discontinuous interface separating particles and matrix. Here, the Guinier law is introduced for the case of magnetic small-angle neutron scattering and its applicability is experimentally demonstrated for the example of nanocrystalline cobalt. It is well known that the magnetic microstructure of nanocrystalline ferromagnets is highly nonuniform on the nanometre length scale and characterized by a spectrum of continuously varying long-wavelength magnetization fluctuations, i.e. these systems do not manifest sharp interfaces in their magnetization profile. The magnetic Guinier radius depends on the applied magnetic field, on the magnetic interactions (exchange, magnetostatics) and on the magnetic anisotropy-field radius, which characterizes the size over which the magnetic anisotropy field is coherently aligned into the same direction. In contrast to the nonmagnetic conventional Guinier law, the magnetic version can be applied to fully dense random-anisotropy-type ferromagnets.

14.
Langmuir ; 36(3): 742-753, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31895574

RESUMO

The linear shrinkage behavior in thermoresponsive diblock copolymer films and its potential application in temperature sensors are investigated. The copolymer is composed of two thermoresponsive blocks with different transition temperatures (TTs): di(ethylene glycol) methyl ether methacrylate (MEO2MA; TT1 = 25 °C) and poly(ethylene glycol) methyl ether methacrylate (OEGMA300; TT2 = 60 °C) with a molar ratio of 1:1. Aqueous solutions of PMEO2MA-b-POEGMA300 show a three-stage transition upon heating as seen with optical transmittance and small-angle X-ray scattering: dissolution (T < TT1), self-assembled micelles with core-shell structure (TT1 < T < TT2), and aggregation of collapsed micelles (T > TT2). Due to the restrictions in the polymer chain arrangement introduced by the solid Si substrate, spin-coated PMEO2MA-b-POEGMA300 films exhibit an entirely different internal structure and transition behavior. Neutron reflectivity shows the absence of an ordered structure normal to the Si substrate in as-prepared PMEO2MA-b-POEGMA300 films. After exposure to D2O vapor for 3 h and then increasing the temperature above its TT1 and TT2, the ordered structure is still not observed. Only a D2O enrichment layer is formed close to the hydrophilic Si substrate. Such PMEO2MA-b-POEGMA300 films show a linear shrinkage between TT1 and TT2 in a D2O vapor atmosphere. This special behavior can be attributed to the synergistic effect between the restrained collapse of the PMEO2MA blocks by the still swollen POEGMA300 blocks and the impedance of chain arrangement by the Si substrate. Based on this unique behavior, spin-coated PMEO2MA-b-POEGMA300 films are further prepared into a temperature sensor by implementing Ag electrodes. Its resistance decreases linearly with temperature between TT1 and TT2.

15.
Langmuir ; 35(24): 7691-7702, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117727

RESUMO

Thermoresponsive films of poly( N-isopropyl methacrylamide) (PNIPMAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA) are compared with respect to their hydration and dehydration kinetics using in situ neutron reflectivity. Both as-prepared films present a homogeneous single-layer structure and have similar transition temperatures of the lower critical solution temperature type (TT, PNIPMAM 38 °C and PMDEGA 41 °C). After hydration in unsaturated D2O vapor at 23 °C, a D2O enrichment layer is observed in PNIPMAM films adjacent to the Si substrate. In contrast, two enrichment layers are present in PMDEGA films (close to the vapor interface and the Si substrate). PNIPMAM films exhibit a higher hydration capability, ascribed to having both donor (N-H) and acceptor (C═O) units for hydrogen bonds. While the swelling of the PMDEGA films is mainly caused by the increase of the enrichment layers, the thickness of the entire PNIPMAM films increases with time. The observed longer relaxation time for swelling of PNIPMAM films is attributed to the much higher glass transition temperature of PNIPMAM. When dehydrating both films by increasing the temperature above the TT, they react with a complex response consisting of three stages (shrinkage, rearrangement, and reswelling). PNIPMAM films respond faster than PMDEGA films. After dehydration, both films still contain a large amount of D2O, and no completely dry film state is reached for a temperature above their TTs.

16.
Adv Mater ; 31(17): e1900264, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30866107

RESUMO

A biskyrmion consists of two bound, topologically stable, skyrmion spin textures. These coffee-bean-shaped objects are observed in real space in thin plates using Lorentz transmission electron microscopy (LTEM). From LTEM imaging alone, it is not clear whether biskyrmions are surface-confined objects, or, analogous to skyrmions in noncentrosymmetric helimagnets, 3D tube-like structures in a bulk sample. Here, the biskyrmion form factor is investigated in single- and polycrystalline-MnNiGa samples using small-angle neutron scattering. It is found that biskyrmions are not long-range ordered, not even in single crystals. Surprisingly all of the disordered biskyrmions have their in-plane symmetry axis aligned along certain directions, governed by the magnetocrystalline anisotropy. This anisotropic nature of biskyrmions may be further exploited to encode information.

17.
Sci Adv ; 4(9): eaar7043, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30225364

RESUMO

Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with the Dzyaloshinskii-Moriya interaction. Recently, ß-Mn structure-type Co-Zn-Mn alloys were identified as a new class of chiral magnet to host such skyrmion crystal phases, while ß-Mn itself is known as hosting an elemental geometrically frustrated spin liquid. We report the intermediate composition system Co7Zn7Mn6 to be a unique host of two disconnected, thermal-equilibrium topological skyrmion phases; one is a conventional skyrmion crystal phase stabilized by thermal fluctuations and restricted to exist just below the magnetic transition temperature Tc, and the other is a novel three-dimensionally disordered skyrmion phase that is stable well below Tc. The stability of this new disordered skyrmion phase is due to a cooperative interplay between the chiral magnetism with the Dzyaloshinskii-Moriya interaction and the frustrated magnetism inherent to ß-Mn.

18.
Soft Matter ; 14(31): 6582-6594, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30052259

RESUMO

The effect of chain architecture on the swelling and thermal response of thin films obtained from an amphiphilic three-arm star-shaped thermo-responsive block copolymer poly(methoxy diethylene glycol acrylate)-block-polystyrene ((PMDEGA-b-PS)3) is investigated by in situ neutron reflectivity (NR) measurements. The PMDEGA and PS blocks are micro-phase separated with randomly distributed PS nanodomains. The (PMDEGA-b-PS)3 films show a transition temperature (TT) at 33 °C in white light interferometry. The swelling capability of the (PMDEGA-b-PS)3 films in a D2O vapor atmosphere is better than that of films from linear PS-b-PMDEGA-b-PS triblock copolymers, which can be attributed to the hydrophilic end groups and limited size of the PS blocks in (PMDEGA-b-PS)3. However, the swelling kinetics of the as-prepared (PMDEGA-b-PS)3 films and the response of the swollen film to a temperature change above the TT are significantly slower than that in the PS-b-PMDEGA-b-PS films, which may be related to the conformation restriction by the star-shape. Unlike in the PS-b-PMDEGA-b-PS films, the amount of residual D2O in the collapsed (PMDEGA-b-PS)3 films depends on the final temperature. It decreases from (9.7 ± 0.3)% to (7.0 ± 0.3)% or (6.0 ± 0.3)% when the final temperatures are set to 35 °C, 45 °C and 50 °C, respectively. This temperature-dependent reduction of embedded D2O originates from the hindrance of chain conformation from the star-shaped chain architecture.

19.
J Colloid Interface Sci ; 531: 98-108, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029032

RESUMO

Specular neutron reflectometry is a powerful technique to resolve interfacial compositions and structures in soft matter. Surprisingly however, even after several decades, a universal modeling approach for the treatment of data of surfactant and phospholipid monolayers at the air/water interface has not yet been established. To address this shortcoming, first a systematic evaluation of the suitability of different models is presented. The result is a comprehensive validation of an optimum model, which is evidently much needed in the field, and which we recommend as a starting point for future data treatment. While its limitations are openly discussed, consequences of failing to take into account various key aspects are critically examined and the systematic errors quantified. On the basis of this physical framework, we go on to show for the first time that neutron reflectometry can be used to quantify directly in situ at the air/water interface the extent of acyl chain compaction of phospholipid monolayers with respect to their phase. The achieved precision of this novel quantification is ∼10%. These advances together enhance significantly the potential for exploitation in future studies data from a broad range of systems including those involving synthetic polymers, proteins, DNA, nanoparticles and drugs.


Assuntos
Fosfolipídeos/química , Tensoativos/química , Ar/análise , Modelos Químicos , Nêutrons , Propriedades de Superfície , Termodinâmica , Água/química
20.
ACS Nano ; 10(8): 7458-66, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27447734

RESUMO

We present an operando neutron reflectometry study on the electrochemical incorporation of lithium into crystalline silicon for battery applications. Neutron reflectivity is measured from the ⟨100⟩ surface of a silicon single crystal which is used as a negative electrode in an electrochemical cell. The strong scattering contrast between Si and Li due to the negative scattering length of Li leads to a precise depth profile of Li within the Si anode as a function of time. The operando cell can be used to study the uptake and the release of Li over several cycles. Lithiation starts with the formation of a lithium enrichment zone during the first charge step. The uptake of Li can be divided into a highly lithiated zone at the surface (skin region) (x ∼ 2.5 in LixSi) and a much less lithiated zone deep into the crystal (growth region) (x ∼ 0.1 in LixSi). The total depth of penetration was less than 100 nm in all experiments. The thickness of the highly lithiated zone is the same for the first and second cycle, whereas the thickness of the less lithiated zone is larger for the second lithiation. A surface layer of lithium (x ∼ 1.1) remains in the silicon electrode after delithiation. Moreover, a solid electrolyte interface is formed and dissolved during the entire cycling. The operando analysis presented here demonstrates that neutron reflectivity allows the tracking of the kinetics of lithiation and delithiation of silicon with high spatial and temporal resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...